If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5u^2=10u
We move all terms to the left:
5u^2-(10u)=0
a = 5; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·5·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*5}=\frac{0}{10} =0 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*5}=\frac{20}{10} =2 $
| (8x-5)=(3x-10) | | -4(5+7y)+6(2y-9)=0 | | 8(3n+7)-10n=0 | | 7a+49=434 | | -4(8-9x)=0 | | -9-x=-9-48x | | -6(2-7m)-2(-3-2)=0 | | -9-x=-3-6 | | -9-x=-3-6(1+8x) | | -4(5+7y)+6(2y-9=0 | | 2x+13=61 | | 3×9^1+x=27^-x | | 2m-2(3m-2)=0 | | 56=c9 | | 35-17=3(x-18) | | 4/2x=8^2x | | 7.2+v/8=-5.6 | | 2×4^x-3=16x÷8^1-x | | 12−y=−15 | | 32−3f=14 | | 16^3-x=1 | | 2/7=12/x | | 6y-6=5y-2 | | 5(8-x)=-5x+40 | | 14=4/3x | | x=0.85*3440 | | x=0.85*1440 | | -2y+7-4=6y-1-4y | | -4x-x/3=-2/5+-1/15 | | x=17/20,1140*x | | -4x-x/3=-2/5+1/15 | | x=17/201140*x |